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Abstract

Risk measurement for derivative portfolios almost invariably calls for nested simulation. In the
outer step one draws realizations of all risk factors up to the horizon, and in the inner step one
re-prices each instrument in the portfolio at the horizon conditional on the drawn risk factors.
Practitioners may perceive the computational burden of such nested schemes to be unacceptable,
and adopt a variety of second-best pricing techniques to avoid the inner simulation. In this paper,
we question whether such short cuts are necessary. We show that a relatively small number of trials
in the inner step can yield accurate estimates, and analyze how a fixed computational budget may
be allocated to the inner and the outer step to minimize the mean square error of the resultant
estimator. Finally, we introduce a jackknife procedure for bias reduction and a dynamic allocation
scheme for improved efficiency.
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For a wide variety of derivative instruments, computational costs may pose a binding constraint
on the choice of pricing model. The more realistic and flexible the model, the less likely that there
will exist an analytical pricing formula, and so the more likely that simulation-based pricing al-
gorithms will be required. For plain-vanilla options trading in fast-moving markets, simulation is
prohibitively slow. Simple models with analytical solutions are typically employed with ad-hoc ad-
justments (such as local volatility surfaces) to obtain better fit to the cross-section of market prices.
As such models capture underlying processes in crude fashion, they tend to require frequent recal-
ibration and perform poorly in time-series forecasting. For path-dependent options (e.g, lookback
options) and complex basket derivatives (e.g., CDO of ABS), simulation is almost unavoidable,
though even here computational shortcuts may be adopted at the expense of bias.1

Risk-management applications introduce additional challenges. Time constraints are less press-
ing than in trading applications, but the computational task may be more formidable. When loss
is measured on a mark-to-market basis, estimation via simulation of large loss probabilities or of
risk-measures such as Value-at-Risk (VaR) calls for a nested procedure: In the outer step one draws
realizations of all risk factors up to the horizon, and in the inner step one re-prices each position
in the portfolio at the horizon conditional on the drawn risk factors. It has been widely assumed
that simulation-based pricing algorithms would be infeasible in the inner step, because the inner
step must be executed once for each trial in the outer step.

In this paper, we question whether inner step simulations must necessarily impose a large
computational burden. We show that a relatively small number of trials in the inner step can yield
accurate estimates for large loss probabilities and portfolio risk-measures such as Value-at-Risk
and Expected Shortfall, particularly when the portfolio contains a large number of positions. Since
an expectation is replaced by a noisy sample mean, the estimator is biased, and we are able to
characterize this bias asymptotically. We analyze how a fixed and large computational budget may
be allocated to the inner and the outer step to minimize the mean square error of the resultant
estimator. We show how the jackknifing technique may be applied to reduce the bias in our
estimator, and how this alters the optimal budget allocation. In addition, we introduce a dynamic
allocation scheme for choosing the number of inner step trials as a function of the generated output.
This technique can significantly reduce the computational effort to achieve a given level of accuracy.

The most studied application of nested simulation in the finance literature is the pricing of
American options. An influential paper by Longstaff and Schwartz (2001) proposes a least-squares
methodology in which a small number of inner step samples are used to estimate a parametric rela-
tionship between the state vector at the horizon (in this case, the stock price) and the continuation
value of the option. This “LSM” estimator is applicable to a broad range of nested problems, so
long as the dimension of the state vector is not too large and the relationship between state vector
and continuation value is not too nonlinear. However, some care must be taken in the choice of
basis functions, and in general it may be difficult to assess the associated bias (Glasserman, 2004,
§8.6). Our methodology, by contrast, is well-suited to portfolios of high-dimensional and highly
nonlinear instruments, can be applied to a variety of derivative types without customization, and
has bias of known form.

Our optimization results for large loss probabilities and Value-at-Risk are similar to those of
Lee (1998).2 Lee’s analysis relies on a different and somewhat more intricate set of assumptions

1Many of the ideas in this paper were developed originally in Gordy and Juneja (2006) specifically for application
to portfolios of CDO tranches.

2Lee (1998) is an unpublished PhD thesis, which we encountered shortly before completion of this draft. Lee’s
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than ours, which are in the spirit of the sensitivity analysis of VaR by Gouriéroux et al. (2000)
and the subsequent literature on “granularity adjustment” of credit VaR (Martin and Wilde, 2002;
Gordy, 2004). The resulting asymptotic formulae, however, are the same.3 Our extension of
this methodology to Expected Shortfall is new, as is our analysis of large portfolio asymptotics.
Furthermore, so far as we are aware, we are the first to examine the performance of jackknife
estimators and dynamic allocation schemes in a nested simulation setting.

In Section 1 we set out a very general modeling framework for a portfolio of financial instruments.
We introduce the nested simulation methodology in Section 2. We characterize the bias in and
variance of the simulation estimator, and analyze the optimal allocation of computational resources
between the two stages that minimizes the mean square error of the resultant estimator. Numerical
illustrations of our main results are provided in Section 3. In the last two sections, we propose some
refinements to further improve computational performance of nested simulation. Simple jackknife
methods for bias reduction are developed in Section 4. Our dynamic allocation scheme is introduced
and examined in Section 5.

1 Model framework

Let Xt be a vector of m state variables that govern all prices. The vector Xt might include interest
rates, commodity prices, equity prices, and other underlying prices referenced by derivatives. Let
Ft be the filtration generated by Xt. For use in discounting future cash flows, we denote by Bt(s)
the value at time s of $1 invested at time t ≤ s in a risk free money market account, i.e.,

Bt(s) = exp
(∫ s

t
r(u)du

)
.

If interest rates are stochastic, then Bt(s) depends on Fs.
The portfolio consists of K+1 positions. The price of position k at time t depends on t, Ft, and

the contractual terms of the instrument.4 Position 0 represents the sub-portfolio of instruments
for which there exist analytical pricing functions. Without loss of generality, we treat this as a
single composite instrument. Among the contractual terms for an instrument is its maturity. We
assume maturity Tk is finite for k = 1, . . . ,K. As in all risk measurement exercises, the portfolio is
assumed to be held static over the model horizon.

Conditional on Ft, the cashflows up to time t are nonstochastic functions of time that depend
on the contractual terms. Let Ck(t) be the cumulative cashflow for k on (0, t]. Note that increments
to Ck(t) can be positive or negative, and can arrive at discrete time intervals or continuously. The
market value of each position is the present discounted expected value of its cashflows under the
risk-neutral measure Q:

Vk(t) = EQ
[∫ Tk

t

dCk(s)
Bt(s)

∣∣∣∣Ft]
contribution anticipates the work of Gouriéroux et al. (2000) and the literature on granularity adjustment, and
appears to have been overlooked in the finance literature.

3For a very different approach to optimization of computational budget in a nested simulation, see De Prisco et al.
(2007).

4For some exotic options, the price at t will depend on the entire path of Xs on s = (0, t]. This is why we need
the filtration Ft and not just Xt.
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The valuations are expressed in currency units, so there is no need for portfolio weights.5 We set
Vk(t) = 0 whenever t ≥ Tk.

The present time is normalized to 0 and the model horizon is H. “Loss” is defined as the
difference between current value and discounted future value at the horizon, adjusting for interim
cashflows. Portfolio loss is

Y =
K∑
k=0

(
Vk(0)− 1

B0(H)

(
Vk(H) +

∫ H

0
Bt(H) dCk(t)

))
.

The implicit assumption here is that interim cashflows are reinvested in the money market until
time H, but other conventions are easily accommodated.

2 Simulation framework

We now develop notation related to the simulation process. The simulation is nested: There is an
“outer step” in which we draw histories up to the horizon H. For each trial in the outer step, there
is an “inner step” simulation needed for repricing at the horizon.

Let L be the number of trials in the outer step. In each of these trials, we

1. Draw a single path Xt for t = (0,H] under the physical measure. Let ξ represent the filtration
FH that is generated by this path.

2. Evaluate the accrued value at H of the interim cashflows.

3. Evaluate the price of each position at H.

• Closed-form price for instrument 0.

• Simulation with Nk “inner step” trials for remaining positions k = 1, . . . ,K. These
paths are simulated under the risk-neutral measure.

4. Discount back to time 0 to get our loss Y (ξ).

Observe that the full dependence structure across the portfolio is captured in the period up
to the model horizon. Inner step simulations, in contrast, are run independently across positions.
This is because the value of position k at time H is simply a conditional expectation (given FH
and under the risk-neutral measure) of its own subsequent cash flows, and does not depend on
future cash flows of other positions. Intuition might suggest that it would be more efficient from
a simulation perspective to run inner step simulations simultaneously across all positions in order
to reduce the total number of sampled paths of Xt on (H,max{Tk}]. However, if we use the same
samples of Xt across inner step simulations, pricing errors are no longer independent across the
positions, and so do not diversify away as effectively at the portfolio level. Furthermore, when the
positions are repriced independently, to reprice position k we need only draw joint paths for the
elements of Xt that influence that instrument. This may greatly reduce the memory footprint of
the simulation, in particular when the number of state variables (m) is large and when some of the
maturities {Tk} are very long relative to the horizon H.

5Values can be negative, so it isn’t always natural to decompose portfolio value into a vector of weights and a
vector of “returns”.
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We have assumed that initial prices Vk(0) are already known and can be taken as constants in
our algorithm. Of course, this can be relaxed.

In the following three subsections, we discuss estimation of large loss probabilities (§2.1), Value-
at-Risk (§2.2), and Expected Shortfall (§2.3). For simplicity, we impose a single value of N across
all positions (i.e., Nk = N for k = 1, ...,K). This restriction is relaxed in Section 2.4. In Section
2.5, we consider the asymptotic behavior of the optimal allocation of computational resources as
the portfolio size grows large. Last, in Section 2.6, we elaborate on the trade-offs associated with
simultaneous repricing.

2.1 Estimating the probability of large losses

We first consider the problem of efficient estimation of α = P (Y (ξ) > u) via simulation for a given u.
If for each generated ξ, the mark-to-market values of each position were known, the associated Y (ξ)
would be known and simulation would involve generating i.i.d. samples Y (ξ1), Y (ξ2), . . . , Y (ξL) and
taking the average

1
L

L∑
i=1

1[Y (ξi) > u]

as an estimator of α. However, the mark-to-market value of each position is not known and is
instead estimated via the inner step simulations.

Within the inner step simulation for repricing position k, each trial gives an unbiased (but very
noisy) estimate of Y (ξ). Let ζki(ξ) denote the zero-mean pricing error associated with the ith such
sample for position k, let Zi(ξ) denote the portfolio pricing error for the ith inner step sample, and
finally let

Z̄N(ξ) =
1
N

N∑
i=1

Zi(ξ) =
1
N

N∑
i=1

K∑
k=1

ζki(ξ)

be the zero-mean average pricing error for the portfolio as a whole. In place of Y (ξ), we take as its
surrogate Ỹ (ξ) ≡ Y (ξ)+ Z̄N(ξ) as an estimate of loss in the portfolio. By the law of large numbers,

Z̄N(ξ) → 0 a.s.

as N →∞ for any fixed K (assuming that E[|ζki|] <∞ for each k). The estimator for P (Y (ξ) > u)
then involves generating i.i.d. samples (Ỹ1(ξ1), . . . , ỸL(ξL)) via outer and inner step simulation and
taking the average

α̂L,N =
1
L

L∑
`=1

1[Ỹ`(ξ`) > u].

We now examine the mean square error of α̂L,N . Let αN denote P (Ỹ (ξ) > u). The mean square
error of the estimator α̂L,N separates into

E[(α̂L,N − α)2] = E[(α̂L,N − αN + αN − α)2] = E[(α̂L,N − αN)2] + (αN − α)2.

Further, note that

E[(α̂L,N − αN)2] = V[α̂L,N ] =
αN(1− αN)

L

where for any random variable X, V[X] denotes its variance. Suppose that the computational effort
to generate one sample of ξ (outer step simulation) on an average equals γ0 > 0, and to generate
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an inner step simulation sample on the average equals γ1. Then, average effort per iteration of
simulation equals Nγ1 + γ0 and average effort for L iterations equals L(Nγ1 + γ0). By law of large
numbers this is close to the actual effort when L is large. We suppose that the overall computational
budget is fixed at Γ. We analyze the problem of choosing (N,L) to minimize the mean square error
of the estimator α̂L,N when L(Nγ1+γ0) = Γ for large Γ. Thus we consider the optimization problem

min
N,L≥0

αN(1− αN)
L

+ (αN − α)2 subject to L(Nγ1 + γ0) = Γ, (1)

as Γ →∞. Proposition 1 states our essential result for solving the optimization problem. We need
some notation and a technical assumption for this.

Let Z̃N = Z̄N ·
√
N so that Z̃N has a non-trivial limit as N →∞. Then αN = P (Y + Z̃N/

√
N >

u). Our asymptotic analysis relies on Taylor series expansion of the joint density function gN(y, z) of
(Y, Z̃N) and its partial derivatives. Assumption 1 ensures that higher order terms in such expansions
can be ignored.

Assumption 1 1. The joint pdf gN(·, ·) of Y and Z̃N and its partial derivatives ∂
∂ygN(y, z) and

∂2

∂y2
gN(y, z) exist for each N and for all (y, z).

2. For N ≥ 1, there exist non-negative functions p0,N (·), p1,N (·) and p2,N (·) such that

gN(y, z) ≤ p0,N (z),∣∣∣∣ ∂∂ygN(y, z)
∣∣∣∣ ≤ p1,N (z)∣∣∣∣ ∂2

∂y2
gN(y, z)

∣∣∣∣ ≤ p2,N (z)

for all y, z. In addition,

sup
N

∫ ∞

−∞
|z|rpi,N (z)dz <∞

for i = 0, 1, 2, and 0 ≤ r ≤ 4.

This assumption may be expected to be true in a large portfolio where there are at least a few
positions that have a sufficiently smooth payoff. Alternatively, this assumption may be satisfied by
perturbing Y and Z̃N through adding to both of them mean zero, variance ε independent Gaussian
random variables, also independent of Y and Z̃N . For small ε this has a negligible impact on the
tail measures. Then, if

sup
N

∫ ∞

−∞
z4dFZ̃N

(z) <∞, (2)

where FZ̃N
(·) denotes the distribution function of Z̃N , Assumption 1 can be seen to hold. To see

this, let Yε and Z̃N,ε denote the random variables obtained by perturbing Y and Z̃N as described
above. Then, the joint pdf of (Yε, Z̃N,ε) equals

gN,ε(y, z) =
∫
<2

φε(y − a)φε(z − b)dGN(a, b),
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where φε(·) denotes the pdf of Gaussian random variable with mean zero and variance ε, and
GN(·, ·) denotes the joint distribution function of (Y, Z̃N). Since, φε(·) and its first two derivatives
are bounded, it is easy to see that equation (2) implies that Assumption 1 holds for (Yε, Z̃N,ε).

Assumption 1 is sufficient to deliver a useful convergence property. Here and henceforth, let f
and F denote the density and cumulative distribution function for Y , and let f̃N and F̃N denote the
density and cumulative distribution function for Ỹ . Now let yN be some sequence of real numbers
that converges to a real number y. In Appendix A.1, we prove the following lemma:

Lemma 1
Under Assumption 1, if yN → y, then f̃N(yN) → f(y) and f̃ ′N(yN) → f ′(y) as N →∞.

We now approximate αN in orders of 1/N . We define the function

Θ(u) =
1
2
f(u)E[σ2

ξ |Y = u], (3)

where σ2
ξ denotes the conditional variance of Zi (conditioned on ξ). Our approximation is given

by:6

Proposition 1 Under Assumption 1,

αN = α+ θu/N +ON (1/N3/2)

where θu = −Θ′(u).

Proof is in Appendix A.2.
For the distributions and large loss levels one might expect to appear in practice, the bias

will be upwards (i.e., θu > 0). By construction, the distribution of Y (ξ) + Z̄N(ξ) differs from the
distribution of Y (ξ) by a mean-preserving spread, in the sense of Rothschild and Stiglitz (1970).
Unless the two distributions have an infinite number of crossings, there will exist a u∗ such that
α̂L,N ≥ α for all u > u∗.

Applying Proposition 1, the objective function reduces to finding N that minimizes

Nγ1 + γ0

Γ
(α(1− α) +ON (1/N)) +

θ2
u

N2
+ON (1/N5/2).

It is easy to see that an optimal N for this has the form

N∗ =
(

2θ2
u

α(1− α)γ1

)1/3

Γ1/3 + oΓ(Γ1/3). (4)

Therefore optimal L has the form

L∗ =
(
α(1− α)
2γ2

1θ
2
u

)1/3

Γ2/3 + oΓ(Γ2/3), (5)

and the mean square error at optimal N∗ equals

3
(
θuα(1− α)γ1

2Γ

)2/3

+ oΓ(Γ−2/3).

6We say that a function is Om(h(m)) if for all m sufficiently large its absolute value is upper bounded by a constant
times h(m). We say that it is om(h(m)) if for any ε > 0 its absolute value is upper bounded by ε times h(m).
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For large computational budgets, we see that L∗ grows with the square of N∗. Thus, marginal
increments to Γ are allocated mainly to the outer step. It is easy to intuitively see the imbalance
between N∗ and L∗. Note that when N and L are of the same order

√
Γ, the squared bias term

contributes much less to the mean square error compared to the variance term. By increasing L at
the expense of N we reduce variance till it matches up in contribution to the squared bias term.

2.2 Estimating Value-at-Risk

We now consider the problem of efficient estimation of Value-at-Risk for Y . For a target insolvency
probability α, VaR is the value yα given by

yα = VaRα[Y ] = inf{y : P (Y ≤ y) ≥ 1− α}.

Under Assumption 1, Y is a continuous random variable so that P (Y ≥ yα) = α. As before,
our nested simulation generates samples (Ỹ1(ξ1), . . . , ỸL(ξL)) where Ỹ (ξ) ≡ Y (ξ) + Z̄N (ξ). We
sort these draws as Ỹ[1] ≥ . . . ≥ Ỹ[L], so that ỸdαLe provides an estimate of yα, where dae denotes
the integer ceiling of the real number a. Our interest is in characterizing the mean square error
E[(ỸdαLe − yα)2] and then minimizing it. As before, we decompose MSE into variance and squared
bias:

E[(ỸdαLe − yα)2] = V[ỸdαLe] + E[ỸdαLe − yα]2.

To approximate bias and variance, we use the following result:

Proposition 2 Under Assumption 1,

E[ỸdαLe]− yα =
θα

Nf(yα)
+ oN (1/N) +OL(1/L) + oN (1)OL(1/L),

where θα = −Θ′(yα) and

V[ỸdαLe] =
α(1− α)

(L+ 2)f(yα)2
+OL(1/L2) + oN (1)OL(1/L).

A result parallel to the bias approximation is used in the literature on “granularity adjustment” of
credit VaR to adjust asymptotic approximations of VaR for undiversified idiosyncratic risk (Martin
and Wilde, 2002; Gordy, 2004). To avoid lengthy technical digressions, our statement of the propo-
sition and its derivation in Appendix A.3 abstract from certain mild but cumbersome regularity
conditions; see the appendix for details.

Our budget allocation problem reduces to minimizing the mean square error

α(1− α)
(L+ 2)f(yα)2

+
θ2
α

N2f(yα)2
+ oN (1/N2) + oN (1)OL(1/L) +OL(1/L2),

subject to L(Nγ1 + γ0) = Γ. It is easy to see that the optimal solution is

N∗ =
(

2θ2
α

α(1− α)γ1

)1/3

Γ1/3 + oΓ(Γ1/3).

and

L∗ =
(
α(1− α)
2γ2

1θ
2
α

)1/3

Γ2/3 + oΓ(Γ2/3).
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These values are identical up to terms of size oΓ(Γ2/3) to the optimal values for estimating P (Y > u)
derived in the previous section when u = yα. The mean square error at optimal N∗ equals

3
f(yα)2

(
θα(1− α)γ1

2Γ

)2/3

+ oΓ(Γ−2/3).

2.3 Estimating Expected Shortfall

Although Value-at-Risk is ubiquitous in industry practice, it is well understood that it has signifi-
cant theoretical and practical shortcomings. It ignores the distribution of losses beyond the target
quantile, so may give incentives to build portfolios that are highly sensitive to extreme tail events.
More formally, Value-at-Risk fails to satisfy the sub-addivity property, so a merger of two portfolios
can yield VaR greater than the sum of the two stand-alone VaRs. For this reason, Value-at-Risk is
not a coherent risk-measure, in the sense of Artzner et al. (1999).

As an alternative to VaR, Acerbi and Tasche (2002) propose using generalized Expected Shortfall
(“ES”), defined by

ESα[Y ] = α−1 (E[Y · 1[Y ≥ yα]] + yα(1− α− Pr(Y < yα))) , (6)

The first term is often used as the definition of Expected Shortfall for continuous variables. It is
also known as “tail conditional expectations.” The second term is a correction for mass at the
quantile yα. In our setting, Y and Ỹ are continuous in distribution, so

ESα[Y ] =
1
α

E[Y · 1[Y > yα]]

ESα[Ỹ ] =
1
α

E[Ỹ · 1[Ỹ > ỹα]]

Acerbi and Tasche (2002) show that ES is coherent and equivalent to the “conditional VaR” (CVaR)
measure of Rockafellar and Uryasev (2002).

We begin with the more general problem of optimally allocating a computational budget to
efficiently estimate Υ(u) = E[Y · 1[Y > u]] for arbitrary u. This is easier than the problem of
estimating E[Y · 1[Y > yα]] since here u is specified while in the latter case yα is estimated. We
return later to analyze the bias associated with the estimate of E[Y · 1[Y > yα]].

Again, our sample output from the simulation to estimate Y · 1[Y > u] equals Ỹ ·1[Ỹ > u]. Let
ΥN(u) denote E[Ỹ · 1[Ỹ > u]]. The following proposition evaluates the bias associated with this
term.

Proposition 3 Under Assumption 1,

ΥN(u) = Υ(u) + (Θ(u)− uΘ′(u))/N +ON (1/N3/2)

The proof is given in Appendix A.4.
Using similar analysis to the proof of Proposition 3, we can establish that

E[Ỹ 2 · 1[Ỹ > u]]− E[Y 2 · 1[Y > u]] = ON (1/N),

and therefore that
V[Ỹ · 1[Ỹ > u]] = V[Y · 1[Y > u]] +ON (1/N). (7)
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Thus, analogous to Section 2.1, we consider the optimization problem

min
N,L≥0

V[Ỹ · 1[Ỹ > u]]
L

+ (ΥN(u)−Υ(u))2 subject to L(Nγ1 + γ0) = Γ,

as Γ →∞.
Applying Proposition 3 and (7), the objective function reduces to finding N that minimizes

V [Y · 1[Y > u]] +ON (1/N)
L

+
(Θ(u)− uΘ′(u))2

N2
+ON (1/N5/2).

It is easy to see that an optimal N for this has the form

N∗ =

(
2(Θ(u)− uΘ′(u))2

V[Y · 1[Y > u]]γ1

)1/3

Γ1/3 + oΓ(Γ1/3), (8)

and optimal L has the form

L∗ =

(
V[Y · 1[Y > u]]

2γ2
1(Θ(u)− uΘ′(u))2

)1/3

Γ2/3 + oΓ(Γ2/3). (9)

The mean square error at optimal N∗ equals

3
(

(Θ(u)− uΘ′(u))V[Y · 1[Y > u]]γ1

2Γ

)2/3

+ oΓ(Γ−2/3).

We return now to the problem of the bias of ESα[Ỹ ]. We can write the difference between the
Expected Shortfall of random variables Ỹ and Y as

E[Ỹ |Ỹ > ỹα]− E[Y |Y > yα] =
1
α

(ΥN(ỹα)−Υ(yα))

=
1
α

((ΥN(ỹα)−ΥN(yα)) + (ΥN(yα)−Υ(yα))) (10)

From Proposition 3, we have

ΥN(yα)−Υ(yα) =
1
N

(
Θ(yα)− yαΘ′(yα)

)
+ON (1/N3/2). (11)

Now from the mean value theorem

ΥN(ỹα)−ΥN(yα) = (ỹα − yα)ΥN
′(y̆)

where y̆ lies between yα and ỹα. Note that ΥN
′(y) = −yf̃N(y) and that y̆ → yα as N →∞. From

Lemma 1 it follows that f̃N(y̆) → f(y). Therefore,

ΥN(ỹα)−ΥN(yα) = −(ỹα − yα)(yαf(yα) + oN (1)) = −yαθα
N

+ oN (1/N). (12)

where the last equality follows from Proposition 2. By substituting equations (11) and (12) into
(10), we arrive at

ESα[Ỹ ]− ESα[Y ] = Θ(yα)/N + oN (1/N). (13)

A similar result is noted by Martin and Tasche (2007) and Gordy (2004).
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2.4 Optimal allocation within the inner step

In this subsection we relax the restriction that Nk is equal across k. We focus on estimation of
large loss probabilities. Similar analysis would allow us to vary Nk across positions in estimating
VaR and ES.

We redefine N as the total number of inner step simulations. This aggregate N is to be divided
up among the positions k = 1, . . . ,K by allocating pkN simulations for position k where each
pk ≥ 0 and

∑
k≤K pk = 1. Suppose that the average effort to generate a single such inner step

simulation for k is γ1,k. Then, total inner step simulation effort equals Nγ1 where

γ1 =
K∑
k=1

pkγ1,k.

For a single trial of the outer step simulation, the inner step simulation generates the estimate

Ỹ (ξ) = Y (ξ) +
K∑
k=1

1
pkN

pkN∑
i=1

ζki(ξ).

Here we ignore minor technicalities associated with pkN not being an integer.
The analysis to compute the mean square error proceeds exactly as in Section 2.1. The resultant

θu in this setting is

θu = −1
2
d

du
f(u)

K∑
k=1

1
pk

E[σ2
k,ξ|Y = u] =

K∑
k=1

θu,k
pk

(14)

where σ2
k,ξ denotes the variance of ζk,·(ξ) conditioned on ξ, and where we define

θu,k = −1
2
d

du
f(u)E[σ2

k,ξ|Y = u].

Recall from Section 2.1 that the mean square error at optimal N∗ equals

3
(
θuα(1− α)γ1

2Γ

)2/3

+ oΓ(Γ−2/3).

Holding N∗ fixed, we now consider the problem of determining an approximation to optimal {pk ≥
0 : k ≤ K}. As u and hence α are fixed, it is reasonable to ignore the oΓ(Γ−2/3) residual and simply
minimize the product θuγ1, which we can write as

θuγ1 =

(
K∑
k=1

θu,k
pk

)
×

 K∑
j=1

pjγ1,j

 .

Since the terms pk and pj appear as ratios in the objective, the constraint
∑

k≤K pk = 1 simply
involves normalizing any solution of the unconstrained problem. From the first order conditions,
we can easily verify that the solution (p∗k : k ≤ K) is

p∗k =

√
θu,k/γ1,k∑K

j=1

√
θu,j/γ1,j

.

This is intuitive as one expects that higher computation resources should be allocated to a position
with higher contribution to bias and lower computational effort. This is captured by θu,k in the
numerator and γ1,k in the denominator.
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2.5 Large portfolio asymptotics

Intuition suggests that as the portfolio size increases, the optimal number of inner loops needed
becomes small, even falling toN∗ = 1 for a sufficiently large portfolio. We formalize this intuition by
considering an asymptotic framework where both the portfolio size and the computational budget
increases to infinity. To avoid cumbersome notation and tedious technical arguments, we focus on
the case of a portfolio of exchangeable (i.e., statistically homogeneous) positions. The arguments
given are somewhat heuristic to give the flavor of analysis involved while avoiding the cumbersome
and lengthy notation and assumptions needed to make it completely rigorous.

Consider an infinite sequence of exchangeable position indexed by k, and let Wk be the loss on
position k. Let Ȳ K be the average loss per position on a portfolio consisting of the first K positions
in the sequence, i.e.,

Ȳ K =
1
K

K∑
k=1

Wk.

We assume that Assumption 1 holds for the individual Wk and their respective pricing errors ζki.
As before, instead of observing Wk(ξ), we generate N inner step samples Wk(ξ) + ζki(ξ) for

i = 1, . . . , N , so that our simulation provides an unbiased estimator for the probability

P (Ȳ K + Z̄K,N > u),

where

Z̄K,N =
1

KN

N∑
i=1

K∑
k=1

ζki.

We approximate the bias P (Ȳ K + Z̄K,N > u)− P (Ȳ K > u) as K and N grow large. Applying the
same arguments as in proof of Proposition 1, we can show

P (Ȳ K + Z̄K,N > u) = P (Ȳ K > u) + θK
u /(KN) + oKN (1/(KN)),

where θK
u = −Θ′

K(u) and

ΘK(u) =
1
2
d

du
f̄K(u)E[σ̃2

ξ |Ȳ K = u]

where f̄K(·) denotes the pdf of Ȳ K , and σ̃2
ξ = V[ζ·,·|ξ].

By the law of large numbers, |Ȳ K−E[W1|ξ]| → 0, almost surely, so the cdf F̄K converges to a non-
degenerate limiting distribution F̄ , which is the distribution of E[W1|ξ]. Similarly, E[σ̃2

ξ |Ȳ K = u]
converges to E[σ̃2

ξ |E[W1|ξ] = u]. Under suitable regularity conditions, θK
u → θ̄u = −Θ̄′(u), where

Θ̄(u) =
1
2
d

du
f̄(u)E[σ̃2

ξ |E[W1|ξ] = u].

Therefore, the bias has the form θ̄u/(KN) + oKN (1/KN).
We assume that the computational budget Γ = χKβ for χ > 0 and β ≥ 1. The value of β

captures the size of computational budget available relative to the time taken to generate a single
inner loop sample. Note that if β < 1 then asymptotically even a single sample cannot be generated.

Recall that m denotes the number of underlying state variables that control the prices of K
positions. Suppose that the computational effort to generate one sample of outer step simulation
on average equals ψ(m,K) for some function ψ, and to generate an inner step simulation sample

11



on the average equals Kγ1 for a constant γ1 > 0. Average effort per outer step trial then equals
KNγ1 +ψ(m,K) and average effort for L such trials equals L(KNγ1 +ψ(m,K)). We analyze the
order of magnitude of N and L that minimize the resultant mean square error of the estimator.

The mean square error of the estimator equals

α(1− α)
L

+
θ̄2
u

K2N2

plus terms that are relatively negligible for large values of K. Noting that L = χKβ−1

Nγ1+ψ(m,K)/K , it is
easily seen that the value of N ≥ 1 that minimizes the dominant terms in the mean square error
equals

N∗ = max

(
1,
(

2θ̄2
uχ

α(1− α)γ1

)1/3

Kβ/3−1

)
In particular, if β < 3 then, N = 1 for K sufficiently large. Intuitively, this means that if the
portfolio has a large number of positions and the computational budget is limited, then, N may
be kept equal to 1 irrespective of the form of the fixed-cost function ψ(m,K). In this case L∗ is of
order min(Kβ−1,Kβ/ψ(m,K)). Only when β > 3 does N grow with K.

2.6 Simultaneous repricing

Up to this point, we have stipulated that the inner step samples for each position in the portfolio are
generated independently (conditional on ξ) across positions. In application to derivative portfolios,
there may be factors common to many positions (e.g., the prices of underlying securities) and it may
be computationally efficient to generate these factors once for all positions rather than generating
them independently for each position. While this reduces the computational effort required to
generate a single sample of each position, it induces dependence across positions in the generated
samples. If the dependence is such that the sum of the resultant noise from each position has
lesser variance than if these samples were generated independently, as might be the case when
there are many offsetting positions, then the former is a preferred method. However, typically the
noises generated may have positive dependence and that may enhance the variance of the resulting
samples thereby increasing the total number of samples required to achieve specified accuracy.

We now make this idea precise in a very simple setting. Consider the case where we want to
find the expectation of

∑K
i=1Xi via simulation. Suppose that average computational effort needed

to generate a sample of
∑K

i=1Xi by generating independent samples of (X1, . . . , XK) equals Kγ
for some constant γ > 0. Let V[X] denote the variance of these Xi’s (to keep the discussion simple
we assume that all rv have the same variance). Then, the computational effort required to get a
specified accuracy is proportional to the variance of the sample K ·V[X] times the expected effort
required to generate a single sample Kγ (see Glynn and Whitt, 1992), i.e., K2γV[X]. We refer to
this measure as the simulation efficiency.

Now consider the case where we generate
∑K

i=1Xi by generating dependent samples of (X1, . . . , XK).
Suppose that the computational effort to generate these samples on average equals Kγ(1− β) for
some β < 1. Further suppose that the correlation between any two random variables Xi and Xj for
i 6= j is ρ ∈ (0, 1). Then the variance of

∑K
i=1Xi equals K(1 + ρ(K − 1))V[X]. So the simulation

efficiency equals K2γ(1 − β)(1 + ρ(K − 1))V[X]. We therefore prefer to draw dependent samples
whenever

β > 1− 1
(1 + ρ(K − 1))

.
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Unless 1− β = oK(1/K), we will prefer to draw independent samples for any K sufficiently large.
This broadly indicates the benefits of independent samples in many finance settings. For the
remainder of this paper, we reinstate the stipulation of independent repricing.

3 Numerical examples

We illustrate our results with a parametric example. Distributions for loss Y and the pricing errors
Z are specified to ensure that the bias and variance of our simulation estimators are in closed-form.
While the example is highly stylized, it allows us to compare our asymptotically optimal (N∗, L∗)
to the exact optimal solution under a finite computational budget. We have used simulation to
perform similar exercises on the somewhat more realistic example of a portfolio of equity options.
All our conclusions are robust.

Consider a homogeneous portfolio of K positions. Let the state variable, Xt, represent a single-
dimensional market risk factor, and assume XH ∼ N (0, 1). Let εk be the idiosyncratic component
to the return on position k at the horizon, so that the loss on position k is (XH + εk) per unit of
exposure. We assume that the εk are i.i.d. N (0, ν2). To facilitate comparative statics on K, we
scale exposure sizes by 1/K.

The exact distribution for portfolio loss Y is N (0, 1+ν2/K). We assume that the position-level
inner step pricing errors ζk,· are i.i.d. N (0, η2) per unit of exposure, so that the portfolio pricing
error has variance σ2 = η2/K across inner step trials. This implies that the simulated loss variable
Ỹ is distributed N (0, 1 + ν2/K + σ2/N). Figure 1 shows how the density of the simulated loss
distribution varies with the choice of N . For the baseline parameter values ν = 3, η = 10 and
K = 100, we observe that the density of Ỹ for N = 64 is a close approximation to the “true”
density for Y . Even for N = 16, the error due to inner step simulation appears modest.

We consider our estimator α̂L,N of the large loss probability α = P (Y > u) = Φ(−u/
√

1 + ν2/K)

for a fixed loss level u. The expected value of α̂L,N is αN = P (Ỹ > u) = Φ
(
−u/

√
1 + ν2/K + σ2/N

)
.

Applying Proposition 1, bias in α̂L,N expands as αN − α ≈ θ/N where

θ =
σ2

2
u(1 + ν2/K)−3/2φ(−u/

√
1 + ν2/K).

and where φ is the standard normal density. Figure 2 plots the exact bias αN − α and the approx-
imation θ/N as a function of 1/N . The first-order approximation to the bias is quite accurate at
modest values of N . At N = 8, the relative error of the approximation is roughly 6%, and even at
N = 2, the relative error is under 17%.

In Figure 3, we plot the exact root mean square error of α̂L,N as a function of N and with the
computational budget held fixed. Here we make the assumption that the fixed cost of the outer
step is negligible (i.e., γ0 ≈ 0), so that Γ ∝ N · L. We observe that the optimal N is increasing
with the budget, but remains quite modest even for the largest budget depicted (N · L = 216).
The relationship between the computational budget and optimal N is explored further in Figure
4. We solve for the N that minimizes the (exact) mean square error, and plot N∗ as a function of
the budget Γ = N · L. Again, we see that N∗ is much smaller than L∗ and grows at a slower rate
with Γ. For example, when N · L = 210, we find N∗ is under 6 and L∗ is over 165. Increasing the
budget by a factor of 64, we find N∗ roughly quadruples while L∗ increases by a factor of roughly
16. The figure demonstrates the accuracy of the approximation to N∗ given by equation (4). When
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Figure 1: Density of the loss distribution

Gaussian example with parameters: ν = 3, η = 10, K = 100.

Figure 2: Exact and approximated bias

Solid line plots exact bias for Gaussian example, dashed line plots first-order approximation
of Proposition 1. Parameters: ν = 3, η = 10, K = 100 and u = VaR0.01[Y ].
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Figure 3: Root Mean Square Error

RMSE in Gaussian example. Each line depicts the relationship between N and RMSE for
a fixed computational budget. Parameters: ν = 3, η = 10, K = 100 and u = VaR0.01[Y ].

Γ = 210, the relative error of the approximation is 8.3%. Increasing the budget to Γ = 216 shrinks
the relative error to under 2.5%.

The optimal N∗ and the accuracy of its approximation may depend on the exceedance threshold
u, and not necessarily in a monotonic fashion. This is demonstrated in the top panel of Figure 5.
The budget here is large, and we see that the approximation to N∗ is accurate over the entire range
of interest (say, for u < VaR0.0001[Y ]). When the budget is smaller (bottom panel), the accuracy
of the approximation is most severely degraded in the tail.

In Figure 6, we explore the relationship between portfolio size K and optimal N . For simplicity,
we assume here that the budget grows linearly with K. In the baseline case of K = 100, we find that
N∗ is roughly 23. When we triple the portfolio size (and budget), we find that N∗ falls to under
six. If we increase the portfolio size by a factor of 10, we find that N∗ is under two. These results
suggest that the large portfolio asymptotics of section 2.5 may pertain to portfolios of realistic size.

As Value-at-Risk is the risk-measure most commonly used in practice, we turn briefly to the
estimation of VaR. The results of Section 2.2 show that the bias in ŷα vanishes with 1/N . This is
demonstrated in Figure 7 for three values of α. For each line, the y-axis intercept at 1/N = 0 is the
unbiased benchmark, i.e., VaRα[Y ]. The distance on the y-axis between VaRα[Ỹ ] (on the solid line)
for any finite N and the corresponding unbiased benchmark VaRα[Y ] is the exact bias attributable
to errors in pricing at the horizon. The dashed lines show the approximated VaR based on

E[ỸdαLe] ≈ yα +
1
N

θα
f(yα)

.
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Figure 4: Optimal N grows with computational budget

Budget is Γ = N · L. Parameters: ν = 3, η = 10, K = 100 and u = VaR0.01[Y ].

Figure 5: Optimal N depends on exceedance threshold

Quantiles of the distribution of Y marked in basis points. Budget is Γ = N ·L. Parameters:
ν = 3, η = 10 and K = 100.
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Figure 6: Optimal N as portfolio size varies

Budget is Γ = N · L = 216 for K = 100, and grows linearly with K. Parameters: ν = 3,
η = 10, and u = VaR0.01[Y ].

For the distributional assumptions of our example, we have

θα
f(yα)

=
σ2

2
Φ−1(1− α)√

1 + ν2/K
.

Clearly, the linearized approximation to the bias is highly accurate in this example.

4 Jackknife estimation

Jackknife estimators, introduced over 50 years ago by Quenouille (1956), are commonly applied
when bias reduction is desired. We show how jackknife methods can be applied in our setting to
the estimation of large loss probabilities. Parallel methods would apply to VaR and ES.

We divide the inner loop sample of N draws into I non-overlapping sections (N and I are
selected so that N/I is an integer). Section i covers the N/I draws N (i−1)

I + 1, . . . , N i
I . For

a single outer step trial, represented by ξ, let aN denote the sample output from the inner step
1[Ỹξ > u] as proposed in earlier sections. Let Ỹξ(−i) be the estimate of Yξ that is obtained when
section i is omitted, and define aN(−i) similarly, e.g., aN(−I) = 1[Ỹξ(−I) > u]. Observe that the
bias in aN(−i) is θ/(N(I − 1)/I) plus ON (1/N3/2) terms, and furthermore that we can construct
I different sample outputs this way.
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Figure 7: Bias of estimated Value-at-Risk

Solid lines are exact VaRα[Ỹ ], dashed lines are approximations based on Proposition 2.
Intercept on y-axis is VaRα[Y ]. Parameters: ν = 3, η = 10 and K = 100.

We now propose the jackknife inner step simulation output

a† = IaN − (I − 1)
1
I

I∑
i=1

aN(−i) = aN +
I − 1
I

I∑
i=1

(aN − aN(−i)). (15)

The bias in a† is

E[a†]− α = IαN − (I − 1)αN(I−1)/I − α

= I(α+ θ/N +ON (1/N3/2))− (I − 1)(α+ θ/(N(I − 1)/I) +ON (1/N3/2))− α

= θ

(
I

N
− I − 1

(N(I − 1)/I)

)
+ON (1/N3/2) = ON (1/N3/2).

Thus, the first-order term in the bias is eliminated.
Define bN(−i) = aN − aN(−i) for i ≤ I. From the second representation of a† in (15), we see

that the variance of the estimator a† is

V[a†] = V[aN ]+
(I − 1)2

I
V[bN(−I)]+2(I−1)Cov[aN , bN(−I)]+ (I − 1)3

I
Cov[bN(−1), bN(−I)], (16)

where Cov[X1, X2] denotes the covariance between X1 and X2. We now evaluate the dominant
term in this as N →∞. To keep the analysis simple, we assume that I is fixed even as N increases.
As we note later, keeping I small has computational benefits. In Appendix A.5, we demonstrate
that
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Proposition 4 V[bN(−i)] = ON (1/N1/2).

From this result and the Cauchy-Schwartz inequality, we have

|Cov[aN , bN(−I)]| ≤
√

V[aN ] ·V[bN(−I)] = ON (1/N1/4).

Similarly, Cov[bN(−1), bN(−I)] is ON (1/N1/2). Therefore, from equation (16) for fixed I indepen-
dent of N , V[a†] = α(1− α) +ON (1/N1/4).

Our jackknife estimator is the average of L samples of a†, i.e., α̂† = (1/L)
∑L

`=1 a
†
`(ξ`). The

contribution of variance to its mean square error is

V[α̂†] =
α(1− α) +ON (1/N1/4)

L
.

The contribution from the squared bias term is ON (1/N3). Suppose that the dominant term in
the squared bias has the form π

N3 (an expression for π could be obtained by taking one more term
in the Taylor series expansion of αN in the proof of Proposition 1). Proceeding as in section 2.1,
we assume that the computation effort takes the form Γ = L(Nγ1 + γ0), and choose N∗and L∗ to
minimize the mean square error subject to the budget constraint. We find

N∗ =
(

3π
α(1− α)γ1

Γ
)1/4

+ oΓ(Γ1/4)

L∗ =
(
α(1− α)

3πγ3
1

)1/4

Γ3/4 + oΓ(Γ3/4),

so even fewer inner step samples are needed for the jackknife estimator. The mean square error at
optimal N∗ equals

4π1/4

(
α(1− α)γ1

3Γ

)3/4

+ oΓ(Γ−3/4).

Thus, the rate of convergence of the mean square error to zero reduces from order Γ−2/3 to a faster
Γ−3/4.

In most applications of jackknife methods, bias reduction comes at the price of increased vari-
ance. This trade-off applies here as well. To illustrate, we return to the Gaussian example of
Section 3. For any parametric example, it is useful to re-write the terms in equation (16) for the
variance of a† as:

V[bN(−I)] = V[aN ] + V[aN(−I)]− 2Cov[aN , aN(−I)]
Cov[aN , bN(−I)] = V[aN ]− Cov[aN , aN(−I)]

Cov[bN(−1), bN(−I)] = V[aN ]− Cov[aN , aN(−I)]− Cov[aN , aN(−1)] + Cov[aN(−1), aN(−I)].

By the symmetry of the aN(−i), we have

Cov[aN , aN(−1)] = Cov[aN , aN(−I)] = P (Ỹ > u, Ỹ (−I) > u)− αNαN(I−1)/I . (17)

Similarly, we have

Cov[aN(−1), aN(−I)] = P (Ỹ (−1) > u, Ỹ (−I) > u)− α2
N(I−1)/I . (18)
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For the Gaussian example, let

Un =
−u√

1 + ν2/K + σ2/n

so that α = Φ(U∞) and αN = Φ(UN). The bivariate probabilities in Equations (17) and (18) are

P (Ỹ > u, Ỹ (−I) > u) = Φ2

(
UN , UN(I−1)/I ,

√
1 + ν2/K + σ2/N

1 + ν2/K + σ2/(N(I − 1)/I)

)

P (ỸL(−1) > u, ỸL(−I) > u) = Φ2

UN(I−1)/I , UN(I−1)/I ,
1 + ν2/K + σ2

N(I−1)/I
I−2
I−1

1 + ν2/K + σ2

N(I−1)/I


where Φ2(z1, z2, ρ) is the bivariate normal cdf for standard normal marginals and correlation ρ.

Holding fixed N = 32, we plot the bias of the jackknife estimator as a function of the number
of sections (I) in the top panel of Figure 8. The bias is decreasing in I, but the sensitivity to I is
modest in both absolute terms and relative to the bias of the uncorrected estimator. The bias of
the uncorrected aN is 9.04 basis points, whereas the bias of a† is -0.29 basis points when I = 2 and
-0.15 basis points when I = N = 32. The standard deviation of aL,N is plotted as a function of I in
the bottom panel of the figure. We find the standard deviation increases in roughly linear fashion
with I. For the uncorrected estimator, we find

√
V[aN ] = 0.104, whereas

√
V[a†] = 0.128 for I = 2

and
√

V[a†] = 0.606 for I = N = 32.

Figure 8: Bias and variance of jackknife estimators

Parameters: N = 32, ν = 3, η = 10, K = 100 and u = VaR0.01[Y ].

The optimal choice of I for minimizing mean square error will depend on L. The larger is L,
the smaller the contribution of variance to MSE, so the larger the optimal I. As a practical matter,
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we advocate setting I = 2, which eliminates nearly all the bias at very little cost to variance.
Setting I = 2 has the further advantage of minimal memory overhead, in that one can estimate
1[Ỹξ(−1) > u], 1[Ỹξ(−2) > u], and 1[Ỹξ > u] for each outer step ξ in a single pass through the inner
loop. By contrast, to implement the jackknife with I = N sections, we need to save each of the N
inner loop draws in order to calculate each of the N estimates 1[Ỹξ(−1) > u], . . . , 1[Ỹξ(−N) > u].

5 Dynamic allocation

Through dynamic allocation of workload in the inner step we can further reduce the computational
effort in the inner step while increasing the bias by a negligible controlled amount or even (in many
cases) decreasing the bias. Consider the estimation of large loss probabilities P (Y > u) for a given
u. Bias in our estimated α̂ is increasing with the likelihood that the indicator 1[Ỹ (ξ) > u] obtained
from the inner step simulation is not equal to the true 1[Y (ξ) > u] for a given realization ξ of the
outer step. Say we form a preliminary estimate Ỹ n based on the average of a small number n of
inner step trials. If this estimate is much smaller or much larger than u, it may be a waste of effort
to generate many more samples in the inner simulation step. However, if this average is close to u,
it makes sense to generate many more inner step samples in order to increase the probability that
the estimated 1[Ỹ (ξ) > u] is equal to the true value 1[Y (ξ) > u]. The variance of α̂ is dominated
by α(1−α)/L, so dynamic allocation in the inner step will have little effect on the variance. As in
Section 4, we develop our dynamic allocation methods for the estimation of large loss probabilities.
Similar methods would apply to VaR and ES.

Our proposed dynamic allocation (DA) scheme is very simple. For each trial ξ of the outer
step, we generate δN inner step trials (selecting δ so that δN is an integer), and let the resulting
preliminary loss estimate be denoted Ỹ δ. If Ỹ δ < u − ε for some well-chosen ε > 0 then we
terminate the inner step and our sample output is zero.7 Otherwise, we generate a second estimate
Ỹ 1−δ based on an additional (1− δ)N conditionally independent samples. Defining

Ỹ ∗ = δỸ δ + (1− δ)Ỹ 1−δ,

our final estimate Ỹ DA
ξ is taken as

Ỹ DA
ξ =

{
Ỹ δ, if Ỹ δ < u− ε

Ỹ ∗, otherwise.

The cost of computation per inner loop is proportional to the average number of inner step trials
executed, which is

N̄DA ≡ N · (δ + (1− δ)P (Ỹ δ > u− ε)) < N,

so the DA estimator always has lower computational effort than the static estimator (for any N
held fixed).

With dynamic allocation, the bias in the estimated exceedance probability is

P (Ỹ DA > u, Ỹ δ > u− ε)− P (Y > u) = P (Ỹ ∗ > u)− P (Y > u)− P (Ỹ ∗ > u, Ỹ δ ≤ u− ε)

= (αN − α)− P (Ỹ ∗ > u, Ỹ δ ≤ u− ε). (19)

7We could improve the scheme slightly by incorporating an upper bound stopping rule as well, setting sample
output to 1 if, say, tY δ > u + ε. As this event occurs only rarely, the computational savings are generally modest so
we do not develop this modification here.
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Thus, dynamic allocation introduces a negative increment to bias, relative to the static estimator.
As we have seen earlier, in typical application the static estimator has a positive bias. The joint
probability P (Ỹ ∗ > u, Ỹ δ ≤ u − ε) can be made arbitrarily small by choosing δ large (near one)
and/or choosing a large ε. Therefore, when αN − α > 0, there must exist pairs (δ, ε) such that the
DA estimator has a lower bias than the static estimator. In this case, dynamic allocation reduces
both computational effort and mean square error.

If αN ≤ α then dynamic allocation will increase absolute bias. Even in this general case, we
can derive an upper bound on the increase in absolute bias. As shown in Appendix B, for every
δ one can find an ε so that the resultant increase in bias is within a specified tolerance. The issue
then is to select a δ that most reduces the computational effort.

For numerical illustration, we return to our Gaussian example of Section 3. The exact expected
value of α̂DA in this example is

E[α̂DA] = P (Ỹ DA > u)

= Φ2

(
−u√

1 + ν2/K + σ2/N
,

ε− u√
1 + ν2/K + σ2/(δN)

,

√
1 + ν2/K + σ2/N

1 + ν2/K + σ2/(δN)

)
. (20)

As in our baseline examples, we fix ν = 3, η = 10, K = 100 and u = VaR0.01[Y ]. For the static
scheme with N = 32, we find a bias of 9.0 basis points. For the dynamic allocation scheme, say
we choose δ = 1/32 and ε =

√
V[Y ] = 1.044. Observe that the preliminary sample in the inner

step will consist of a single trial. We find the average number of inner step trials executed is
N̄DA = 6.24, so computational effort is reduced by over 80%. Bias is -0.4 basis points, so also a
large improvement over the static scheme.

More complex dynamic schemes are possible. For example, instead of a single stopping test
at δN , one can have a series of j stopping tests after δ1N, δ2N, . . . , δjN inner step trials. The
bandwidths would narrow successively, i.e., ε1 > ε2 > . . . εj . It may also be possible to design
adaptive strategies for choosing δ and ε that will converge to the optimal values as the outer step
simulation progresses.

6 Conclusion

We have shown that nested simulation of loss distributions poses a much less formidable compu-
tational obstacle than it might initially appear. The essential intuition is similar to the intuition
for diversification in the long-established literature on portfolio choice. In the context of a large,
well-diversified portfolio, risk-averse investors need not avoid high-variance investments so long as
most of the variance is idiosyncratic to the position. In our risk-measurement problem, we see that
large errors in pricing at the model horizon can be tolerated so long as the errors are zero mean
and mainly idiosyncratic. In the aggregate, such errors have modest impact on our estimated loss
distribution. More formally, we are able to quantify that impact in terms of bias and variance of
the resulting estimator, and allocate workload in the simulation algorithm to minimize mean square
error. Simple extensions of the basic nested algorithm can eliminate much of the bias at modest
cost.

Our results suggest that current practice is misguided. In order to avoid the “inner step”
simulation for repricing at the model horizon, practitioners typically rely on overly stylized pricing
models with closed-form solution. Unlike the simulation pricing error in our nested approach,
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the pricing errors that arise due to model misspecification are difficult to quantify, need not be
zero mean, and are likely to be correlated across positions in the portfolio. At the portfolio level,
therefore, the error in estimates of Value-at-Risk (or other quantities of interest) cannot readily be
bounded and does not vanish asymptotically. Our results imply that practitioners should retain
the best pricing models that are available, regardless of their computational tractability. A single
trial of a simulation algorithm for the preferred model will often be less costly than a single call to
the stylized pricing function,8 so running a nested simulation with a small number of trials in the
inner step may be comparable in computational burden to the traditional approach. Despite the
high likelihood of grotesque pricing errors at the instrument level, the impact on estimated VaR is
small. In the limit of an asymptotically large, fine-grained portfolio, even a single inner step trial
per instrument is sufficient to obtain exact pricing at the portfolio level.

Our methods have application to other problems in finance. Nested simulation may arise in
pricing options on complex derivatives (e.g., a European call option on a CDO tranche). When
parameters in an option pricing model are estimated with uncertainty, nested simulation may also
be needed to determine confidence intervals on model prices for thinly-traded complex derivatives.
Similar problems arise in the rating of CDOs and other structured debt instruments when model
parameters are subject to uncertainty. These applications will be developed in future work.

A Proofs

In this section we prove Lemma 1 and Proposition 1. We then derive the expression for the mean
square error of Value-at-Risk discussed in Section 2.2. We then provide a proof of Proposition 3.
In our notation, we suppress the dependence on ξ and N wherever it is visually convenient.

A.1 Proof of Lemma 1

Note that

P (Ỹ ≤ y) =
∫
<

∫ y−z/
√
N

−∞
gN(v, z)dvdz.

Differentiating both sides by y, noting that in the RHS the interchange of integral and the
derivative follows from Assumption 1 (Lang, 1968, p. 249), we get

f̃N(y) =
∫
<
gN(y − z/

√
N, z)dz.

Therefore,

f̃N(yN)− f(y) =
∫
<

(
gN(yN − z/

√
N, z)− gN(y, z)

)
dz.

This equals

(yN − y)
∫
<
gN(y̆N , z)dz −

1√
N

∫
<
zgN(y̆N , z)dz,

where y̆N lies between yN − z/
√
N and y. Clearly, due to Assumption 1, both these terms converge

to zero.
Similarly we see that f̃ ′N(yN) → f ′(y) as N →∞.

8Closed-form solutions to even the simplest pricing models may require special functions, e.g., the confluent
hypergeometric function.
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A.2 Proof of Proposition 1

Note that
αN =

∫
<

∫ ∞

u−z/
√
N
gN(y, z)dydz,

so that
αN − α =

∫
<

∫ u

u−z/
√
N
gN(y, z)dydz. (21)

Consider the Taylor’s series expansion of the pdf in (21),

gN(y, z) = gN(u, z) + (y − u)
∂

∂y
gN(u, z) +

(y − u)2

2
∂2

∂y2
gN(uy, z),

where uy denotes an appropriate number between u and y. From this and Assumption 1, it follows
that

αN − α =
∫
<

z√
N
gN(u, z)dz −

∫
<

z2

2N
∂

∂y
gN(u, z)dz +ON (1/N3/2).

Note that the first term above equals

f(u)√
N

E[Z̃N |Y = u].

This term equals zero since

E[Z̃N |Y = u] = E[E[Z̃N (ξ)|Y (ξ) = u, ξ]] = 0.

The second term can be re-written as:∫
<
z2 ∂

∂y
gN(u, z)dz =

d

du

∫
<
z2gN(u, z)dz

=
d

du
f(u)E[Z̃2

N |Y = u]

=
d

du
f(u)E[E[Z̃2

N |ξ]|Y = u]

=
d

du
f(u)E[σ2

ξ |Y = u],

which completes the proof.

A.3 Mean square error for Value-at-Risk

We derive the bias and variance approximations of Proposition 2. Our treatment in places is
heuristical to avoid lengthy technical issues.

We first develop an asymptotic expression for the bias E[ỸdαLe]− yα. To evaluate E[ỸdαLe], it is
useful to consider the order statistics U[1] ≥ . . . ≥ U[L] of L random variables uniformly distributed
over the unit interval. Within this appendix only, let G̃N denote the inverse of the cdf of Ỹ . Observe
that ỸdαLe has the same distribution as G̃N(UdαLe).
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Consider the Taylor’s series expansion

G̃N(UdαLe) = G̃N(E[UdαLe]) + (UdαLe − E[UdαLe])G̃
′
N(E[UdαLe])

+
1
2
(UdαLe − E[UdαLe])

2G̃′′
N(E[UdαLe]) + remainder terms. (22)

Taking expectations

E[ỸdαLe] = E[G̃N(UdαLe)]

= G̃N(E[UdαLe]) +
1
2
V[UdαLe]G̃

′′
N(E[UdαLe]) + E[remainder terms]. (23)

It is well known (see, e.g., David, 1981) that

E[UdαLe] = 1− dαLe/(L+ 1) = 1− α+OL(1/L) (24)

V[UdαLe] =
α(1− α)
L+ 2

+OL(1/L2). (25)

Through differentiation of the relation F̃N(G̃N(u)) = u, it can be seen that

G̃′′
N(u) = − f̃ ′N(G̃N(u))

f̃N(G̃N(u))3
.

Letting ŷα = G̃N(E[UdαLe]), it can be seen that

E[ỸdαLe] = ŷα −
α(1− α)
2(L+ 2)

f̃ ′N(ŷα)
f̃N(ŷα)3

+OL(1/L2)(constant + oN (1)). (26)

Here we omit the lengthy discussion on the technical assumptions needed to ensure that the expec-
tation of the remainder terms in (23) has the form OL(1/L2)(constant + oN (1)).

Let ỹα = G̃N(1− α) denote the α quantile corresponding to the random variable Ỹ . If we can
show that

ŷα = ỹα +OL(1/L) (27)

and that
ỹα − yα =

θα
Nf(yα)

+ oN (1/N), (28)

where θα = −Θ(yα) = −1
2

d
duf(u)E[σ2

ξ |Y = u]|u=yα , then

ŷα = yα +
θα

Nf(yα)
+OL(1/L) + oN (1/N). (29)

To see that α(1−α)
2(L+2)

f̃ ′N (ŷα)

f̃N (ŷα)3
is OL(1/L)(1 + oN (1)), note that due to Assumption 1, f̃N(·) and

f̃ ′N(·) have bounded derivatives, which implies

f̃N(ŷα) = f̃N(yα) +ON (1/N) +OL(1/L) = f(yα) + oN (1) +OL(1/L).

Similarly,
f̃ ′N(ŷα) = f ′(yα) + oN (1) +OL(1/L).
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In particular, from this, (26) and (29), it follows that the bias

E[ỸdαLe] = yα +
θα

Nf(yα)
+OL(1/L) +OL(1/L)oN (1) + oN (1/N).

Equation (27) follows since equation (24) implies that

ŷα = G̃N(1− α) +OL(1/L) = ỹα +OL(1/L)

for N sufficiently large.
We now show (28). Using the Taylor’s series expansion,

α = P (Ỹ > ỹα) = P (Ỹ > yα)− (ỹα − yα)f̃N(yα) + (ỹα − yα)2f̃ ′N(y̆α)

where y̆α lies between ỹα and yα. From Assumption 1 it follows that f̃ ′N(y) is uniformly bounded
for all y. By Proposition 1, we have

P (Ỹ > yα) = P (Y > yα) + θα/N +ON (1/N3/2).

Since P (Y > yα) = α, it follows that

ỹα − yα =
θα

Nf̃N(yα)
+ oN (1/N).

Since, f̃N(yα) → f(yα), (28) follows.
The expression for variance can be determined by subtracting (26) from (22) and squaring the

difference to get

V[ỸdαLe] =
α(1− α)

(L+ 2)f̃N(ỹα)2
+OL(1/L2) +OL(1/L) · oN (1).

Again, from Lemma 1, f̃N(ỹα) → f(yα) as N →∞. Therefore,

V[ỸdαLe] =
α(1− α)

(L+ 2)f(yα)2
+OL(1/L2) +OL(1/L) · oN (1).

A.4 Proof of Proposition 3

The Υ(·) and ΥN(·) can be written as

ΥN(u) = E[Ỹ · 1[Ỹ > u]] =
∫
<

∫ ∞

u−z/
√
N

(y + z/
√
N)gN(y, z)dydz (30)

Υ(u) = E[Y · 1[Y > u]] =
∫
<

∫ ∞

u
ygN(y, z)dydz. (31)

As E[Z̃N |Y = y] = 0 for each y, we have∫
<

∫ ∞

u
zgN(y, z)dydz =

∫ ∞

u
E[Z̃N |Y = y]f(y)dy = 0.
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Substituting into (30), we have

ΥN(u)−Υ(u) =
∫
<

∫ u

u−z/
√
N
ygN(y, z)dydz +

∫
<
z/
√
N

∫ u

u−z/
√
N
gN(y, z)dydz. (32)

We apply a Taylor series expansion to the first term in (32):∫
<

∫ u

u−z/
√
N
ygN(y, z)dydz

=
∫
<

∫ u

u−z/
√
N
y

(
gN(u, z) + (y − u)

∂

∂y
gN(u, z) +

(y − u)2

2
∂2

∂y2
gN(uy, z)

)
dydz

=
∫
<

(
uz

N1/2
− z2

2N

)
gN(u, z)dz −

∫
<

(
uz2

2N
− z3

3N3/2

)
∂

∂y
gN(u, z)dz + oN (1/N3/2)

= − 1
2N

f(u)E[Z̃2
N |Y = u]− u

2N
d

du

(
f(u)E[Z̃2

N |Y = u]
)

+ON (1/N3/2).

Here, in the first equality uy denotes an appropriate number between u and y, in the third equality
we use the fact that

∫
< zgN(u, z)dz = 0.

For the second term in (32),∫
<
z/
√
N

∫ u

u−z/
√
N
gN(y, z)dydz

=
∫
<
z/
√
N

∫ u

u−z/
√
N

(
gN(u, z) + (y − u)

∂

∂y
gN(u, z) +

(y − u)2

2
∂2

∂y2
gN(uy, z)

)
dydz

=
∫
<

z2

N
gN(u, z)dz −

∫
<

z3

2N3/2

∂

∂y
gN(u, z)dz + oN (1/N3/2)

=
1
N
f(u)E[Z̃2

N |Y = u] +ON (1/N3/2).

Proposition 3 follows by noting that

E[Z̃2
N |Y = u] = E[E[Z̃2

N |Y, ξ]|Y = u] = E[σ2
ξ |Y = u].

A.5 Proof of Proposition 4

We decompose the variance of bN(−i) as E[bN(−i)2]− E[bN(−i)]2. The expectation of bN(−i) is

E[bN(−i)] = E[aN ]− E[aN(−i)]

= α+
θu
N

+ON (1/N3/2)− (α+
θu

N(I − 1)/I
+ON (1/N3/2))

=
−θu

N(I − 1)
+ON (1/N3/2),

which implies that E[bN(−i)]2 = ON (1/N2).
We now argue that E[bN(−I)2] is ON (1/N1/2), ignoring some minor technical issues. From

expanding the square and taking expectations, observe that

E[bN(−I)2] = P (Y + Z̄N > u, Y + Z̄N(I−1)/I ≤ u) + P (Y + Z̄N ≤ u, Y + Z̄N(I−1)/I > u). (33)
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We now show that these two probabilities are equal in their dominant term and are O(1/N1/2).
Some notation is needed for this purpose. Let

AN ≡
(
I

N

)1/2 N∑
i=N(I−1)/I

Zi

BN ≡
(

I

N(I − 1)

)1/2 N(I−1)/I∑
i=1

Zi.

We assume that both AN and BN have limiting distributions with finite expectations. Then,

Z̄N =
1

N1/2

(
(1/I)1/2AN + (I − 1/I)1/2BN

)
.

Let g†N denote the joint pdf of (Y,AN , BN ). Then the first term in (33) can be written as

P (Y + Z̄N > u, Y + Z̄N(I−1)/I ≤ u)

=
∫
a≥b/(I−1)1/2

∫ u−b/(N(I−1)/I)1/2

u−a/(NI)1/2−b/(NI/(I−1))1/2

g†N(y, a, b)dy da db.

Taking a Taylor series expansion of g†N(y, a, b) at the first argument set to u and under assumptions
similar to Assumption 1, this can be seen to equal

1
(NI)1/2

f(u)E[(AN −BN/(I − 1)1/2) · 1[AN −BN/(I − 1)1/2 > 0]|Y = u] +ON (1/N).

Since AN and BN have limiting distributions with finite expectations, the expectation term con-
verges to a constant as N →∞, which implies that

1
(NI)1/2

f(u)E[(AN −BN/(I − 1)1/2) · 1[AN −BN/(I − 1)1/2 > 0]|Y = u] = ON (1/N1/2).

We proceed in exactly the same fashion for the second term in (33), and find that this term is
also ON (1/N1/2).

B Bounding the bias under dynamic allocation

We can bound the absolute bias under dynamic allocation via the triangle inequality:

|P (Ỹ ∗ > u, Ỹ δ > u− ε)− P (Y > u)| = |P (Ỹ ∗ > u)− P (Y > u)− P (Ỹ ∗ > u, Ỹ δ ≤ u− ε)|
≤ |P (Ỹ ∗ > u)− P (Y > u)|+ P (Ỹ ∗ > u, Ỹ δ ≤ u− ε)

so the increase in the absolute bias is no greater than P (Ỹ ∗ > u, Ỹ δ ≤ u− ε). Decomposing this as

P (Ỹ ∗ > u, Ỹ δ ≤ u− ε) = P (Ỹ ∗ > u, Ỹ δ ≤ u− ε, Y > u) + P (Ỹ ∗ > u, Ỹ δ ≤ u− ε, Y ≤ u), (34)
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we can upper bound each of these terms. Let Z̄δ and Z̄1−δ be the average portfolio pricing errors
for the preliminary sample of δN and the continuation sample of (1 − δ)N inner step trials. For
the first term in equation (34), we have the inequality

P (Ỹ ∗ > u, Ỹ δ ≤ u− ε, Y > u) ≤ P (Z̄δ ≤ −ε).

For the second term, we have

P (Ỹ ∗ > u, Ỹ δ ≤ u− ε, Y ≤ u) ≤ P

(
Ỹ 1−δ > u+

δ

1− δ
ε, Y ≤ u

)
≤ P

(
Z̄1−δ >

δ

1− δ
ε

)
.

Hence, an upper bound on the additional bias is

P (Z̄δ ≤ −ε) + P

(
Z̄1−δ >

δ

1− δ
ε

)
. (35)

From here we can take two different approaches:

1. Hoeffding’s inequality (Hoeffding, 1963) can be used to develop exact bounds if the zero mean
noise associated with each position is upper as well as lower bounded. This is generally true
of put options, credit derivatives, and many other types of derivatives. Let ak < ζk,· < bk
denote the bounds on position k. Then,

P (Z̄δ ≤ −ε) ≤ exp

(
− 2δNε2∑K

i=1(bi − ai)2

)

P

(
Z̄1−δ >

δ

1− δ
ε

)
≤ exp

(
− 2δ2Nε2

(1− δ)
∑K

i=1(bi − ai)2

)
.

2. As Zi is the sum of zero mean errors from K positions, we can appeal to the central limit
theorem and take each Zi(ξ) as approximately normal in distribution with mean zero and
variance σ2

ξ .
9 Then,

P (Z̄δ ≤ −ε) = Φ

(
−ε

σξ/
√
δN

)

P

(
Z̄1−δ >

δ

1− δ
ε

)
= Φ

(
−εδ/(1− δ)
σξ/
√

(1− δ)N

)
.

Thus, given an acceptable threshold on the increase in bias, for every δ one can find an ε so that
the resultant increase in bias is controlled. The issue then, is to select a δ that most reduces the
computational effort.

We illustrate this computation using our simple Gaussian example with baseline parameter
values K = 100, ν = 3, and η = 10. This gives us σ = η/

√
K = 1 as the standard deviation of the

Zi. Let u = VaR0.01[Y ] =
√

1 + ν2/KΦ−1(0.99), so that α = 0.01. Say we fix N = 30, δ = 1/3 and

9One can, if necessary, batch the sum of a few Zi’s to improve the approximation to the normal distribution. If
σ2

ξ is unknown, one can estimate it from the sample variance within the inner step. In this case, the standardized Zi

have Student t distribution.
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ε = 2. The upper bound in equation (35) for the increase in bias for α̂DA over the static estimator
α̂L,N is under 4× 10−6. The probability of stopping with the preliminary sample is

P (Ỹ δ ≤ u− ε) = Φ

(
u− ε√

1 + ν2/K + σ2/(δN)

)
≈ 0.653.

The average number of inner step trials executed works out to N̄DA ≈ 0.565N . For a negligible
upper bound on the increase in bias, we cut computational effort nearly in half.
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